Quantum physical chemistry

Quantum physical chemistry

Quantum physics primer

L'estat quàntic és un concepte clau que juga un paper central en l'estudi de fenòmens en física, química, bioquímica, química de materials, biologia, etc. L'obra, catalogada com a "Quantum Physics Primer", tracta de construir i desenvolupar aquest concepte. Orlando Tapia Olivares, cubà de naixement, però resident a Suècia, ha preparat aquests fonaments innovadors expressament per a aquesta edició.

  • Cover
  • Title page
  • Copyright page
  • Content Table
  • Preface
  • CHAPTER 1. Quantum Language in Chemistry
    • 1.1. Chemical change and Q-Language
      • 1.1.1. Chemical versus quantum state concept: a model
      • 1.1.2. From chemical to quantum time evolution
      • 1.1.3. Quantum dynamics
        • 1.1.3.1. Time dependent Schrödinger equation
      • 1.1.4. Basic chemical quantum dynamics
      • 1.1.5. Formal chemical base sets
  • CHAPTER 2. Basic Quantum Formalism
    • 2.1. Axioms of quantum mechanics
      • 2.1.1. Hilbert space axioms
      • 2.1.2. Probing quantum states
    • 2.2. Operators in Hilbert space
    • 2.3. Base change: Similarity transformations
    • 2.4. Density matrix operators
    • 2.5. Time evolution & Scattering operators
      • 2.5.1. Time separability: base sets and amplitudes
      • 2.5.2. External driving forces
      • 2.5.3. Scattering and asymptotic states
      • 2.5.4. Amplitude evolution
    • 2.6. What is in motion actually?
    • 2.7. Key points to retain
    • 2.8. References
  • CHAPTER 3. Quantum states for simple systems
    • 3.1. At a Fence: time-projected quantum formalism
      • 3.1.1. Global scheme
      • 3.1.2. Schrödinger and Heisenberg representations
      • 3.1.3. Interaction representation
      • 3.1.4. Lippmann-Schwinger scheme
      • 3.1.5. Born and higher approximations
    • 3.2. Model systems of broader interest
      • 3.2.1. Particle-states and I-frames system in a box
      • 3.2.2. Several I-frame systems
      • 3.2.3. Two-state model
    • 3.3. External potentials: Fence models
      • 3.3.1. Harmonic oscillator
      • 3.3.2. Hydrogen-like atoms
    • 3.4. Symmetry breaking interactions
    • 3.5. Overview
  • CHAPTER 4. Quantum Theory in Space-Time I-frames
    • 4.1. Configuration space projected Hilbert space
    • 4.2. Translation operator
      • 4.2.1. Infinitesimal translations
      • 4.2.2. Reciprocal space
      • 4.2.3. Finite real space translations
      • 4.2.4. Direct-Reciprocal Spaces: Fourier transforms
      • 4.2.5. Quantum states prepared at a Fence (laboratory)
    • 4.3. Rotation invariance: angular momentum
      • 4.3.1 Base states and eigen values
      • 4.3.2 Ladder operators
      • 4.3.3 Matrix representations
      • 4.3.4 Angular momentum and rotations
    • 4.4. Addition of angular momenta
      • 4.4.1. Addition of two angular momenta
      • 4.4.2. Clebsch-Gordan coefficients
      • 4.4.3. Wigner coefficients: 3j symbols
      • 4.4.4. Addition of three angular momenta
      • 4.4.5. 6j-symbols
    • 4.5. Orbital and spin base functions
      • 4.5.1. Orbital angular momentum: Spherical harmonics
      • 4.5.2. Spin ½ angular momentum
      • 4.5.3. Electron-state base functions
      • 4.5.4. Nuclear spin systems
    • 4.6. Irreducible tensor operators
    • 4.7. Wigner-Eckart theorem
    • 4.8. Discrete symmetries
      • 4.8.1. Parity
      • 4.8.2. Time reversal
      • 4.8.3. Double groups
      • 4.8.4. Permutation symmetry
    • 4.9. Symmetry principles
    • 4.10. Radiation quantum states
      • 4.10.1. Momentum wave-packets: uncertainty relationships
      • 4.10.2. Basis set for EM radiation
      • 4.10.3. Creation/annihilation operators
    • 4.11. QM in configuration space
    • 4.12. Feynman Approach to QM
  • CHAPTER 5. Relativistic invariant frameworks
    • 5.1. Elements of quantum electromagnetism
      • 5.1.1. Classical Maxwell equations
      • 5.1.2. Quantum electrodynamics: elements
      • 5.1.3. Operators in Fock space
      • 5.1.4. Basis functions
        • 5.1.4.1. Fock space
        • 5.1.4.2. Quantum physical states
        • 5.1.4.3. Quantum model for classical EM field
        • 5.1.4.4. Coherent photon states
        • 5.1.4.5. Squeezed photon states
      • 5.1.5. Quantum states: Gauges and phases
      • 5.1.6. At a Fence and beyond
    • 5.2. Relativistic Quantum Mechanics: elements
      • 5.2.1. Klein-Gordon-Schrödinger equation
      • 5.2.2. Dirac equation
      • 5.2.3. Hydrogen-like atoms: relativistic models
      • 5.2.4. Relativistic “electron-only” theory
      • 5.2.5. Towards a Field Theory Framework
    • 5.3. Relativistic related limit models
      • 5.3.1. Pauli equation
      • 5.3.2. Relativistic correction operators
        • 5.3.2.1. Fine structure term
        • 5.3.2.2. Darwin term
        • 5.3.2.3. Spin-orbit correction term
        • 5.3.2.4. Magnetic field coupling term (Zeeman effect)
      • 5.3.3. Hydrogen atom revisited
      • 5.3.4. Hydrogen molecule
    • 5.4. Appendix: Special Relativity Complements
  • CHAPTER 6. Modulating quantum states: Fence
    • 6.1. Entanglement: states
    • 6.2. Quantum states: Diffraction & Interference
      • 6.2.1. Single Slit Diffraction
      • 6.2.2. Double-slit experiments
      • 6.2.3. Events counting and recording: Pattern reconstruction
    • 6.3. Mirrors-Beam Splitters-Phase shifters
    • 6.4. Mach-Zehnder interferometer
      • 6.4.1. Neutron interferometry
    • 6.5. Quantum states for periodic potentials
      • 6.5.1. Cooling and Trapping
      • 6.5.2. Building crystals from I-frame systems
      • 6.5.3. Brillouin zone and Wigner-Seitz primitive cell
      • 6.5.4. Lattice planes
      • 6.5.5. Lattice translation symmetry and band structure
      • 6.5.6. Phonons
      • 6.5.7. Spin waves
  • CHAPTER 7. Quantum states for quantum probing
    • 7.1. Preparing-Detecting-Probing
      • 7.1.1. Preparing and recording
        • 7.1.1.1. Copenhagen view
        • 7.1.1.2. View from the Fence
        • 7.1.1.3. Quantum states and recording screens
        • 7.1.1.4. Events at recording screen
      • 7.1.2.Preparation and time evolution
    • 7.2. Quantum states: experiment planning/probing
      • 7.2.1. Probing wave functions
        • 7.2.1.1. Measurements including entangled states
        • 7.2.1.2. Entanglemen
        • 7.2.1.3. Einstein-Podolsky-Rosen thought experiment
        • 7.2.1.4. Delayed choice experiments
        • 7.2.1.5. Particle picture and delayed choice experiment
      • 7.2.2. Quantum states: what are anyway?
        • 7.2.2.1. Back to “our” quantum states
      • 7.2.3. Atom Interferomenter Planning and Experiments
        • 7.2.3.1. Welger Weg set up
        • 7.2.3.2. Quantum eraser
      • 7.2.4. Neutron Interferometry
        • 7.2.4.1. Neutron spinors
        • 7.2.4.2. Interferometry Devices and Quantum States
      • 7.2.5. Complementarity and ‘which way’ problem
    • 7.3. Recollections and Perspectives
  • CHAPTER 8. Molecular Structure, Statistics & Dynamics
    • 8.1 Molecular structure and dynamics
      • 8.1.1. Semi-classic Hamiltonians
      • 8.1.2. Particle semi-classic Hamiltonians
      • 8.1.3. Diabatic state expansions: Chemical states
      • 8.1.4. Feshbach resonances
      • 8.1.5. Recovering a linear superposition principle
      • 8.1.6. Quantum catalysis
      • 8.1.7. Theory of chemical processes at a Fence
    • 8.2. N-copies of single systems: Gibbs ensemble
    • 8.3. Jaynes-Shannon model
    • 8.4. Thermodynamic potentials
    • 8.5. Thermal equilibrium and radiation
    • 8.6. Spontaneous emission at radio frequencies
    • 8.7. Model systems: Partition functions
    • 8.8. Analytic dynamics and quantum propagators
      • 8.8.1. Elements of Classical Mechanics
      • 8.8.2. Fence: quantum propagators
    • 8.9. Dynamics
  • Back cover

SUBSCRIBE TO OUR NEWSLETTER

By subscribing, you accept our Privacy Policy