Tráeme un arcoíris. Küpalelen kiñe relmu

Tráeme un arcoíris. Küpalelen kiñe relmu

Poemas mapuche para niños y niñas

  • Autor: Huenún Villa, Jaime
  • Editor: LOM Ediciones
  • Colección: Treballs d'Informàtica i Tecnologia
  • ISBN: 9788415444022
  • eISBN Pdf: 9788415444022
  • Lugar de publicación:  Castelló de la Plana , España
  • Año de publicación: 2012
  • Páginas: 390
  • Idioma: Ingles

L'estat quàntic és un concepte clau que juga un paper central en l'estudi de fenòmens en física, química, bioquímica, química de materials, biologia, etc. L'obra, catalogada com a "Quantum Physics Primer", tracta de construir i desenvolupar aquest concepte. Orlando Tapia Olivares, cubà de naixement, però resident a Suècia, ha preparat aquests fonaments innovadors expressament per a aquesta edició.

  • Cover
  • Title page
  • Copyright page
  • Content Table
  • Preface
  • CHAPTER 1. Quantum Language in Chemistry
    • 1.1. Chemical change and Q-Language
      • 1.1.1. Chemical versus quantum state concept: a model
      • 1.1.2. From chemical to quantum time evolution
      • 1.1.3. Quantum dynamics
        • 1.1.3.1. Time dependent Schrödinger equation
      • 1.1.4. Basic chemical quantum dynamics
      • 1.1.5. Formal chemical base sets
  • CHAPTER 2. Basic Quantum Formalism
    • 2.1. Axioms of quantum mechanics
      • 2.1.1. Hilbert space axioms
      • 2.1.2. Probing quantum states
    • 2.2. Operators in Hilbert space
    • 2.3. Base change: Similarity transformations
    • 2.4. Density matrix operators
    • 2.5. Time evolution & Scattering operators
      • 2.5.1. Time separability: base sets and amplitudes
      • 2.5.2. External driving forces
      • 2.5.3. Scattering and asymptotic states
      • 2.5.4. Amplitude evolution
    • 2.6. What is in motion actually?
    • 2.7. Key points to retain
    • 2.8. References
  • CHAPTER 3. Quantum states for simple systems
    • 3.1. At a Fence: time-projected quantum formalism
      • 3.1.1. Global scheme
      • 3.1.2. Schrödinger and Heisenberg representations
      • 3.1.3. Interaction representation
      • 3.1.4. Lippmann-Schwinger scheme
      • 3.1.5. Born and higher approximations
    • 3.2. Model systems of broader interest
      • 3.2.1. Particle-states and I-frames system in a box
      • 3.2.2. Several I-frame systems
      • 3.2.3. Two-state model
    • 3.3. External potentials: Fence models
      • 3.3.1. Harmonic oscillator
      • 3.3.2. Hydrogen-like atoms
    • 3.4. Symmetry breaking interactions
    • 3.5. Overview
  • CHAPTER 4. Quantum Theory in Space-Time I-frames
    • 4.1. Configuration space projected Hilbert space
    • 4.2. Translation operator
      • 4.2.1. Infinitesimal translations
      • 4.2.2. Reciprocal space
      • 4.2.3. Finite real space translations
      • 4.2.4. Direct-Reciprocal Spaces: Fourier transforms
      • 4.2.5. Quantum states prepared at a Fence (laboratory)
    • 4.3. Rotation invariance: angular momentum
      • 4.3.1 Base states and eigen values
      • 4.3.2 Ladder operators
      • 4.3.3 Matrix representations
      • 4.3.4 Angular momentum and rotations
    • 4.4. Addition of angular momenta
      • 4.4.1. Addition of two angular momenta
      • 4.4.2. Clebsch-Gordan coefficients
      • 4.4.3. Wigner coefficients: 3j symbols
      • 4.4.4. Addition of three angular momenta
      • 4.4.5. 6j-symbols
    • 4.5. Orbital and spin base functions
      • 4.5.1. Orbital angular momentum: Spherical harmonics
      • 4.5.2. Spin ½ angular momentum
      • 4.5.3. Electron-state base functions
      • 4.5.4. Nuclear spin systems
    • 4.6. Irreducible tensor operators
    • 4.7. Wigner-Eckart theorem
    • 4.8. Discrete symmetries
      • 4.8.1. Parity
      • 4.8.2. Time reversal
      • 4.8.3. Double groups
      • 4.8.4. Permutation symmetry
    • 4.9. Symmetry principles
    • 4.10. Radiation quantum states
      • 4.10.1. Momentum wave-packets: uncertainty relationships
      • 4.10.2. Basis set for EM radiation
      • 4.10.3. Creation/annihilation operators
    • 4.11. QM in configuration space
    • 4.12. Feynman Approach to QM
  • CHAPTER 5. Relativistic invariant frameworks
    • 5.1. Elements of quantum electromagnetism
      • 5.1.1. Classical Maxwell equations
      • 5.1.2. Quantum electrodynamics: elements
      • 5.1.3. Operators in Fock space
      • 5.1.4. Basis functions
        • 5.1.4.1. Fock space
        • 5.1.4.2. Quantum physical states
        • 5.1.4.3. Quantum model for classical EM field
        • 5.1.4.4. Coherent photon states
        • 5.1.4.5. Squeezed photon states
      • 5.1.5. Quantum states: Gauges and phases
      • 5.1.6. At a Fence and beyond
    • 5.2. Relativistic Quantum Mechanics: elements
      • 5.2.1. Klein-Gordon-Schrödinger equation
      • 5.2.2. Dirac equation
      • 5.2.3. Hydrogen-like atoms: relativistic models
      • 5.2.4. Relativistic “electron-only” theory
      • 5.2.5. Towards a Field Theory Framework
    • 5.3. Relativistic related limit models
      • 5.3.1. Pauli equation
      • 5.3.2. Relativistic correction operators
        • 5.3.2.1. Fine structure term
        • 5.3.2.2. Darwin term
        • 5.3.2.3. Spin-orbit correction term
        • 5.3.2.4. Magnetic field coupling term (Zeeman effect)
      • 5.3.3. Hydrogen atom revisited
      • 5.3.4. Hydrogen molecule
    • 5.4. Appendix: Special Relativity Complements
  • CHAPTER 6. Modulating quantum states: Fence
    • 6.1. Entanglement: states
    • 6.2. Quantum states: Diffraction & Interference
      • 6.2.1. Single Slit Diffraction
      • 6.2.2. Double-slit experiments
      • 6.2.3. Events counting and recording: Pattern reconstruction
    • 6.3. Mirrors-Beam Splitters-Phase shifters
    • 6.4. Mach-Zehnder interferometer
      • 6.4.1. Neutron interferometry
    • 6.5. Quantum states for periodic potentials
      • 6.5.1. Cooling and Trapping
      • 6.5.2. Building crystals from I-frame systems
      • 6.5.3. Brillouin zone and Wigner-Seitz primitive cell
      • 6.5.4. Lattice planes
      • 6.5.5. Lattice translation symmetry and band structure
      • 6.5.6. Phonons
      • 6.5.7. Spin waves
  • CHAPTER 7. Quantum states for quantum probing
    • 7.1. Preparing-Detecting-Probing
      • 7.1.1. Preparing and recording
        • 7.1.1.1. Copenhagen view
        • 7.1.1.2. View from the Fence
        • 7.1.1.3. Quantum states and recording screens
        • 7.1.1.4. Events at recording screen
      • 7.1.2.Preparation and time evolution
    • 7.2. Quantum states: experiment planning/probing
      • 7.2.1. Probing wave functions
        • 7.2.1.1. Measurements including entangled states
        • 7.2.1.2. Entanglemen
        • 7.2.1.3. Einstein-Podolsky-Rosen thought experiment
        • 7.2.1.4. Delayed choice experiments
        • 7.2.1.5. Particle picture and delayed choice experiment
      • 7.2.2. Quantum states: what are anyway?
        • 7.2.2.1. Back to “our” quantum states
      • 7.2.3. Atom Interferomenter Planning and Experiments
        • 7.2.3.1. Welger Weg set up
        • 7.2.3.2. Quantum eraser
      • 7.2.4. Neutron Interferometry
        • 7.2.4.1. Neutron spinors
        • 7.2.4.2. Interferometry Devices and Quantum States
      • 7.2.5. Complementarity and ‘which way’ problem
    • 7.3. Recollections and Perspectives
  • CHAPTER 8. Molecular Structure, Statistics & Dynamics
    • 8.1 Molecular structure and dynamics
      • 8.1.1. Semi-classic Hamiltonians
      • 8.1.2. Particle semi-classic Hamiltonians
      • 8.1.3. Diabatic state expansions: Chemical states
      • 8.1.4. Feshbach resonances
      • 8.1.5. Recovering a linear superposition principle
      • 8.1.6. Quantum catalysis
      • 8.1.7. Theory of chemical processes at a Fence
    • 8.2. N-copies of single systems: Gibbs ensemble
    • 8.3. Jaynes-Shannon model
    • 8.4. Thermodynamic potentials
    • 8.5. Thermal equilibrium and radiation
    • 8.6. Spontaneous emission at radio frequencies
    • 8.7. Model systems: Partition functions
    • 8.8. Analytic dynamics and quantum propagators
      • 8.8.1. Elements of Classical Mechanics
      • 8.8.2. Fence: quantum propagators
    • 8.9. Dynamics
  • Back cover

SUSCRÍBASE A NUESTRO BOLETÍN

Al suscribirse, acepta nuestra Politica de Privacidad