Programación lineal aplicada

Programación lineal aplicada

  • Author: Guerrero Salas, Humberto
  • Publisher: Ecoe Ediciones
  • ISBN: 9789586486170
  • Place of publication:  Bogotá , Colombia
  • Year of publication: 2009
  • Pages: 280
Presenta con un enfoque didáctico y pedagógico la verdadera utilización de la investigación de operaciones en especial de la programación lineal, hoy en día. Empezando por la descripción y formulación detallada sobre cómo realizar un óptimo planteamiento del problema ingenieril hasta su desarrollo empleando varios métodos.
  • Half-Title Page
  • Title Page
  • Copyright Page
  • Author
  • Contents
  • List of Figures
  • List of Tables
  • Acronyms and Abbreviations
  • 1. Introduction
  • 2. The Labour Market and Skill Mismatches
    • 2.1. Introduction
    • 2.2. Basic definitions
      • 2.2.1. Labour supply
      • 2.2.2. Labour demand
      • 2.2.3. Informal economy
      • 2.2.4. Skills
    • 2.3. How the labour market works under perfect competition
      • 2.3.1. Labour demand
      • 2.3.2. Labour supply
      • 2.3.3. Market equilibrium
    • 2.4. Market imperfections and segmentation
      • 2.4.1. Segmentation
      • 2.4.2. Imperfect market information
    • 2.5. Conclusion
  • 3. The Colombian Context
    • 3.1. Introduction
    • 3.2. The characteristics of the Colombian labour market
      • 3.2.1. Labour supply
      • 3.2.2. Labour demand
    • 3.3. Skill mismatches in Colombia
    • 3.4. An international example of skill mismatch measures
    • 3.5. Lack of accurate information to develop well-orientated public policies
    • 3.6. Conclusion
  • 4. The Information Problem: Big Data as a Solution for Labour Market Analysis
    • 4.1. Introduction
    • 4.2. A definition of Big Data
    • 4.3. Big Data on the labour market
      • 4.3.1. Labour supply
      • 4.3.2. Labour demand
    • 4.4. Potential uses of information from job portals to tackle skill shortages
      • 4.4.1. Estimating vacancy levels
      • 4.4.2. Identifying skills and other job requirements
      • 4.4.3. Recognising new occupations or skills
      • 4.4.4. Updating occupation classifications
    • 4.5. Big Data limitations and caveats
      • 4.5.1. Data quality
      • 4.5.2. Job postings are not necessarily real jobs
      • 4.5.3. Data representativeness
      • 4.5.4. Limited internet penetration rates
      • 4.5.5. Data privacy
    • 4.6. Big Data in the Colombian context
    • 4.7. Conclusion
  • 5. Methodology
    • 5.1. Introduction
    • 5.2. Measurement of the labour demand: Job vacancies
    • 5.3. Selecting the most important vacancy websites in the country
    • 5.4. Web scraping
    • 5.5. The organisation and homogenisation of information
      • 5.5.1. Education, experience, localisation, among other job characteristics
      • 5.5.2. Wages
      • 5.5.3. Company classification
    • 5.6. Conclusion
  • 6. Extracting More Value from Job Vacancy Information (Methodology Part 2)
    • 6.1. Introduction
    • 6.2. Identifying skills
    • 6.3. Identifying new or specific skills
    • 6.4. Classifying vacancies into occupations
      • 6.4.1. Manual coding
      • 6.4.2. Cleaning
      • 6.4.3. Cascot
      • 6.4.4. Revisiting manual coding (again)
      • 6.4.5. Adaptation of Cascot according to Colombian occupational titles
      • 6.4.6. The English version of Cascot
      • 6.4.7. Machine learning
    • 6.5. Deduplication
    • 6.6. Imputing missing values
      • 6.6.1. Imputing educational requirements
      • 6.6.2. Imputing the wage variable
    • 6.7. Vacancy data structure
    • 6.8. Conclusion
  • 7. Descriptive Analysis of the Vacancy Database
    • 7.1. Introduction
    • 7.2. Vacancy database composition
    • 7.3. Geographical distribution of vacancies and number of jobs
    • 7.4. Labour demand for skills
      • 7.4.1. Educational requirements
      • 7.4.2. Occupational structure
      • 7.4.3. New or specific job titles
      • 7.4.4. The most in-demand skills (ESCO classifications)
      • 7.4.5. New or specific skills demanded in the Colombian labour market
      • 7.4.6. Experience requirements
    • 7.5. Demand by sector
    • 7.6. Trends in the labour demand
    • 7.7. Wages
    • 7.8. Other characteristics of the vacancy database
    • 7.9. Conclusion
  • 8. Internal and External Validity of the Vacancy Database
    • 8.1. Introduction
    • 8.2. Internal validity
      • 8.2.1. Wage distribution by groups
      • 8.2.2. Vacancy distribution by groups
    • 8.3. External validity
      • 8.3.1. Data representativeness: Vacancy versus household survey information
      • 8.3.2. Time series comparison
    • 8.4. Conclusion
  • 9. Possible Uses of Labour Demand and Supply Information to Reduce Skill Mismatches
    • 9.1. Introduction
    • 9.2. Labour market description
      • 9.2.1. Colombian labour force distribution by occupational groups
      • 9.2.2. Unemployment and informality rates
      • 9.2.3. Trends in the labour market
    • 9.3. Measuring possible skill mismatches (macro-indicators)
      • 9.3.1. Beveridge curve (indicators of imbalance)
      • 9.3.2. Volume-based indicators: Employment, unemployment, and vacancy growth
      • 9.3.3. Price-based indicators: Wages
      • 9.3.4. Thresholds
      • 9.3.5. Skill shortages in the Colombian labour market
    • 9.4. Detailed information about occupations and skill matching
      • 9.4.1. Skills
      • 9.4.2. Skill trends
    • 9.5. Conclusions
  • 10. Conclusions and Implications
    • 10.1. Introduction
    • 10.2. Conceptual contributions
    • 10.3. Contributions to methodology
    • 10.4. Empirical contributions
    • 10.5. Implications for practice and policy
      • 10.5.1. For national statistics offices
      • 10.5.2. For policymakers
      • 10.5.3. For education and training providers
      • 10.5.4. For career advisers
    • 10.6. Limitations
    • 10.7. Further research
      • 10.7.1. Improving machine learning and text mining algorithms
      • 10.7.2. New job titles and potential new occupations
      • 10.7.3. International comparison
    • 10.8. Conclusions
  • References
  • Appendix
    • Appendix A: Examples of Job Portal Structures
    • Appendix B: Text Mining
    • Appendix C: Detailed Process Description for the Classification of Companies
      • C.1. Manual coding
      • C.2. Word-based matching methods (“Fuzzy merge”)
      • C.3. A return to manual coding
    • Appendix D: Machine Learning Algorithms
    • Appendix E: Support Vector Machine (SVM)
    • Appendix F: SVM Using Job Titles
    • Appendix G: Nearest Neighbour Algorithm Using Job Titles
    • Appendix H: Additional Tables
  • Back Cover

SUBSCRIBE TO OUR NEWSLETTER

By subscribing, you accept our Privacy Policy